Documentation of ClusterAnalysis types.
ClusterAnalysis.KmeansResult
— Typestruct KmeansResult{T<:AbstractFloat}
K::Int
centroids::Vector{Vector{T}}
cluster::Vector{Int}
withinss::T
iter::Int
end
Object resulting from kmeans algorithm that contains the number of clusters, centroids, clusters prediction, total-variance-within-cluster and number of iterations until convergence.
ClusterAnalysis.DBSCAN
— Typestruct DBSCAN{T<:AbstractFloat, KD<:KDTree}
df::Matrix{T}
ϵ::T
min_pts::Int
labels::Vector{Int}
tree::KD
clusters::Vector{Vector{Int}}
end
Struct that contains all the relevant information about the model. The data
, ϵ
, min_pts
, labels
, KDTree
and clusters
. The labels and the clusters are defined during the algorithm inside the routine inside fit!()
function, which iterate over every observation p in the dataset.
Internal/External Constructors
- Int - DBSCAN(df::Matrix{T}, ϵ::T, min_pts::Int) where {T<:AbstractFloat}
- Ext - DBSCAN(table, ϵ::Real, min_pts::Int)
- Ext - DBSCAN(df::Matrix{T}, ϵ::Real, minpts::Int) where {T<:AbstractFloat} = DBSCAN(df, T(ϵ), minpts)
- Ext - DBSCAN(df::Matrix{T}, ϵ::Real, minpts::Int) where {T} = DBSCAN(Matrix{Float64}(df), ϵ, minpts)